Life science and medical devices

Here you find innovation projects related to life science and medical devices.


Aalto University's thinTouch project aims to develop a completely new technology for the treatment of a specific brain disease. The invention originated from the Biodesign Finland project, the purpose of which is to identify the needs of healthcare and to develop solutions based on these researches. hentoTouch combines research from different fields of science, creating a completely new concept for the treatment of that disease. The form of treatment is alleviating a huge global health problem that is also currently placing a significant financial burden on health care as well as limited productivity. The aim of the project is to create a solution that offers the opportunity for better treatment results and thus an improved quality of life for patients, as well as significant savings in public funds. In addition, the project will bring Finland to the forefront of the international treatment of this brain disease.

Contact: Ilkka Hyytiäinen, Innovation Advisor (SCI)



The project is preparing the commercialization of a brain imaging technology developed at Aalto University related to the MEG-MRI combination device. Its aim is to demonstrate the commercial potential of the method, to select the primary market areas and to select the best possible business model for the commercialization of the method. The research part of the project aims to ensure and verify the unparalleled diagnostic accuracy and suitability of the method for treatment planning in important areas of application (epilepsy, brain tumors, Alzheimer's disease). The commercialization part of the project will result in a comprehensive business plan and contacts with potential customers and investors.

Contact: Patrik Hollos, Innovation Advisor (SCI)



Depression (Major depressive disorder, MDD) is the leading cause of disability globally and the largest burden of illness among mental health problems. The cost of depression in the United States is> $ 200 billion and in Europe> € 100 billion. ~ 7% of the adult population suffers from depression each year and about half of depression cases go untreated. The main treatments are antidepressants (limited efficacy, variable response, side effects) and various therapies (limited efficacy, high cost, poor availability). Above all, current therapies do not alleviate the cognitive symptoms of depression. Digital Therapeutics (DTx) is a new form of healthcare technology and offers an affordable, highly scalable and widely available solution to global healthcare challenges such as depression. DTx methods based on cognitive psychotherapy already exist for the treatment of depression. We have developed a new type of action computer game that offers a new DTx treatment for depression. Our game innovation alleviates the symptoms of depression, but also seeks to strengthen cognitive performance and thus correct cognitive deficits associated with depression. Our “game of depression” is a unique, challenging and fun action game developed “game above” instead of being based on playful psychological tests. Preliminary research suggests that as early as 8 to 12 weeks of gaming intervention may lead to a clinically significant response to treatment. In this project, we will identify the gaming DTx business models and the freedom of action for our gaming solution. We are producing a proof-of-concept version of the game that will be tested in a clinical trial to determine its effectiveness and safety. The clinical data thus collected will form the basis for the subsequent commercialization of research results and advance national opportunities to play a leading role in the new digital therapies business.

Contact: Patrik Hollos, Innovation Advisor (SCI)



The project is preparing the commercialization of transcranial magnetic stimulation technology, or TMS technology, which is under intensive research and development at Aalto University. TMS is a non-invasive way to activate nerve cells by inducing electrical currents at a desired point in the brain. TMS is already widely used in research, diagnosis and therapy around the world. By commercializing the technology, we aim to bring a new, revolutionary multi-site TMS (mTMS) to other research teams and clinics.

Contact: Patrik Hollos, Innovation Advisor (SCI)



The Nosore R2B project investigates the suitability of a measurement sheet based on smart textiles for assessing the risk of pressure ulcers and thus for the prevention of weight wounds.

Contact Ilkka Hyytiäinen, Innovation Advisor (SCI)



The project will develop biomaterial for a network used to correct pelvic organ deposition in women, as well as a business model to commercialize the invention.

Contact: Ilkka Hyytiäinen, Innovation Advisor (SCI)



Bacterial pathogens utilize a variety of tools to establish successful infections. These include a plethora of toxins, the formation of thick slimy biofilms, endotoxic lipopolysaccharides in the bacterial outer membrane, elastases that break down host connective tissue and flagellar motility, collectively referred to as bacterial virulence factors. The widespread use of, and dependence on, antibiotics to attempt to treat bacterial infections has inadvertently resulted in a strong rise in global encounters of drug resistance. Added to this, antibiotic-mediated killing of bacteria can also result in a massive sudden release of virulence factors, resulting in clinical deterioration of the patient. This has sparked interest in treatments that prioritize the targeting of bacterial virulence factors over bacterial killing.

We have discovered a group of therapeutics that interacts with two virulence factors simultaneously through a completely novel and not previously described Dual mechanism of Action. Both the mechanisms effectively target the bacterial virulence arsenal and collectively the dual functionality leads to a significantly reduced inflammation caused by pathogens in human epithelial cells. The treatment is highly effective against the clinically relevant Pseudomonas aeruginosa and Acinetobacter baumannii strains, including extensively antibiotic resistant clinical isolates.

Contact: Sami Ala-Luukko, Innovation Advisor (SCI)

Contact us
  • Published:
  • Updated:
URL copied!